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Abstract
The nonlocal dynamical polarizability of two arbitrarily shaped objects coupled
by long-range Coulomb forces, when overlap of their electron densities is
negligible, is calculated by expressing it in terms of the response functions
of separate objects. That enables us to extend the density functional theory
approach within the Kohn–Sham scheme to such systems. The method is
applied to the system consisting of two metallic slabs within the jellium model.
The obtained response function of the total system is used to calculate the
correlation energy of a static test charge placed in the system.

1. Introduction

The dielectric response of simple systems such as semi-infinite metals, slabs or spheres within
the jellium model has been extensively studied using the density functional theory (DFT) [1, 2],
with a number of improvements beyond the local density approximation (LDA), e.g. using
the GW approximation [3] or various forms of exchange–correlation functionals in the time-
dependent local density approximation (TDLDA) method [4]. For metallic monolayers the
response was also calculated in a more realistic model, using the ab initio methods [5].
However, much less effort has been made to study the response in a wide range of systems
involving two or more objects, e.g. parallel metallic and/or dielectric slabs. The calculation of
the polarizability of such systems, as well as the dynamically screened nonlocal interaction
propagator which can be derived from the polarizability, can be very useful as a basis
for theoretical studies of their properties, including scattering processes or effective forces
between the subsystems, or in the analysis of quantum mechanical effects in the screening
and excitations in heterostructures, e.g. superlattices [6–8].

While the classical dielectric theory can be easily extended to treat excitations in systems
consisting of two or more objects coupled by long-range Coulomb potentials, the quantum
mechanical approach to this problem presents serious difficulties. Recently a number of papers
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attempted to treat the interaction between such systems at the level of accuracy equal to that of a
single system, i.e. by treating the whole system, consisting of two parts (usually slabs), as one.
The standard procedure is the following: (1) solve the appropriate Kohn–Sham equation for the
whole system, (2) calculate the random-phase-approximation (RPA) density–density response
function, and (3) use the so-called adiabatic-connection formula (ACF) to calculate ground state
exchange–correlation energy [9]. To include short-range correlation effects beyond RPA, one
can use the energy optimized exchange–correlation kernel, which (via ACF) provides accurate
correlation energy in a uniform electron gas [10, 11]. Alternatively, one can implement the GW
scheme to calculate interaction between two very thin metallic slabs [12].

Similar results were calculated in the extended DFT calculation for two semi-infinite solids
with parallel surfaces separated at large distances [13], and for two metallic slabs separated by
a shorter distance (including van der Waals saturation) [14], where again ACF was used as a
starting point but the main intention was to extract the van der Waals functional from it. The
method of [13, 14] is computationally more efficient but the approximations, e.g. the use of the
local dielectric function, make it less accurate.

Even without getting into details of these theories, it soon becomes obvious that the
standard DFT calculations encounter numerical difficulties if both slabs together with the
medium between them are treated as a single system, simply because the total width of the
system becomes too large for the efficient numerical treatment. Therefore the calculations are
usually limited to very thin slabs (5–10 au) separated by vacuum gaps of up to 10 au. Such
an approach includes full short-range correlations, leading e.g. to repulsive potentials at short
distances [15], but cannot reach the van der Waals limit at large separations.

In this paper we develop an efficient method that enables us to perform exact calculations
for two jellium systems coupled via Coulomb interaction, but is restricted to situations in which
electron densities of the two systems do not overlap2.

In section 2 we find a general expression for the dynamically screened response function
in a system consisting of two jellium subsystems, coupled via Coulomb potentials. From the
infinite summations of diagrams for the irreducible polarizabilities, or the equivalent integral
equations, we obtain a set of integral equations for the total response function, containing only
the response functions of the subsystems. In section 3 we apply our general theory to the
system consisting of two parallel jellium slabs of arbitrary thicknesses and densities, where we
can use the symmetry of the system to transform a set of integral equations into a set of matrix
equations. Knowing the response function we can calculate the dynamically screened nonlocal
potential W (Q, ω, z, z ′). In section 4 we apply these results to calculate the correlation energy
for a static test charge.

This derivation of the dynamically screened nonlocal potential provides a useful theoretical
tool in the many-body approach to a wide range of problems, like those mentioned earlier [6–8].

2. General formalism

Our system consists of two objects of arbitrary shapes with electron charge densities n1(r) and
n2(r) extending within the volumes V1 and V2, respectively. It is assumed that the systems are
separated, i.e. that their electron charge densities do not overlap, which is the case in many
physically interesting realistic situations.

In order to calculate the response function R of the total system, we first define the exact
integral equation for the response functions Ri of each object, diagrammatically shown in

2 An analogous idea has already been used e.g. to calculate van der Waals forces between two spherical particles
within a purely classical description of their dielectric properties [16].



Quantum mechanical response of coupled metallic slabs 8219

R R R R

r r ’ r r’ r r ’

r r ’ r r’ r r ’

i  i

0

i

0

i

0

1 2

i  i

0

i

0

i

1 2

+ ...= +

= +

a)

b)

Figure 1. Feynman diagrams for the screened response function Ri (r, r′) (r, r′ ∈ Vi , i = 1, 2) in
a single slab: (a) infinite summation; (b) integral equation. R0

i is the irreducible polarizability, and
the dashed line is the bare Coulomb potential.

figure 1,

Ri
(
r, r′, ω

) = R̃0
i

(
r, r′, ω

) +
∫ ∫

d3r1 d3r2 R̃0
i (r, r1, ω) v (r1, r2) Ri

(
r2, r′ω

) ;
i = 1, 2 (1)

where v(r, r′) is the bare Coulomb interaction,

v
(
r, r′) = e2

|r − r′| (2)

and R̃0
i the irreducible electron polarizability. Replacing R̃0

i with the single pair excitation
diagram

R0
i

(
r, r′ω

) =
∑

n,m

fm − fn

ω − En + Em + iη
φn (r) φm (r) φn

(
r′)φm

(
r′) ; i = 1, 2 (3)

corresponds to the standard RPA. Using the free-electron wavefunctions for φn would lead to
the Lindhard response function, but we shall use the Kohn–Sham wavefunctions calculated
within the LDA. Thus we shall obtain the KS-LDA response function, by use of which we
get beyond RPA and obtain adequate response functions of separate systems. Electrostatic
Coulomb interaction and short-range exchange–correlation effects are locally included through
LDA wavefunctions, while the long-range effects are included through the integral equation (1),
i.e. infinite summation as in figure 1. However, possible coupling between the excitation modes
of separate objects still remains to be included.

To take this coupling into account we can use the diagrammatic approach. We can
distinguish four different classes of diagrams, depending on the spatial position of points r
and r′, leading to four integral equations:

(1) r, r′ ∈ V1

R11
(
r, r′, ω

) = R1
(
r, r′, ω

) +
∫

V2

d3r1

∫

V1

d3r2 �12 (r, r1, ω) v (r1, r2) R11
(
r2, r′ω

)
.

(4)
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Figure 2. Feynman diagrams for the screened response function R11(r, r′) in slab 1 (r, r1,
r4, r′ ∈ V1) coupled to slab 2 (r2, r3 ∈ V2). (a) Infinite summation; (b) integral equation;
(c) diagrammatic representation of �12(r, r′).

Figure 2(b) represents diagrammatically this integral equation, equivalent to the infinite
summation of diagrams (figure 2(a)).

(2) r ∈ V1 and r′ ∈ V2

R12
(
r, r′, ω

) = �12
(
r, r′, ω

) +
∫

V2

d3r1

∫

V1

d3r2 �12 (r, r1, ω) v (r1, r2) R12
(
r2, r′ω

)
.

(5)

This integral equation is represented in figure 3(b), with the corresponding infinite series
of diagrams in figure 3(a).

(3) r ∈ V2 and r′ ∈ V1

R21
(
r, r′, ω

) = �21
(
r, r′, ω

) +
∫

V1

d3r1

∫

V2

d3r2 �21 (r, r1, ω) v (r1, r2) R21
(
r2, r′ω

)
.

(6)

This case is also illustrated in figure 3, after replacing the volume V1 by V2.
(4) r, r′ ∈ V2

Again, after replacing V1 by V2 the next integral equation is shown in figure 2.

R22
(
r, r′, ω

) = R2
(
r, r′, ω

) +
∫

V1

d3r1

∫

V2

d3r2 �21 (r, r1, ω) v (r1, r2) R22
(
r2, r′ω

)
(7)

where

�12
(
r, r′, ω

) =
∫

V1

d3r1

∫

V2

d3r2 R1 (r, r1, ω) v (r1, r2) R2
(
r2, r′ω

)
(8)
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Figure 3. Feynman diagrams for the screened response function R12(r, r′) connecting slabs 1 and
2 (r, r1, r4, r5 ∈ V1, r2, r3, r6, r′ ∈ V2). (a) Infinite summation; (b) integral equation.

and

�21
(
r, r′, ω

) =
∫

V2

d3r1

∫

V1

d3r2 R2 (r, r1, ω) v (r1, r2) R1
(
r2, r′ω

)
(9)

represent Coulomb coupling between charge fluctuation in different objects (figure 3(c)).
After solving equations (4)–(7) and obtaining functions R11, R12, R21 and R22, the response

function R of the total system is calculated as

R (
r, r′ω

) =
∑

i=1,2

∑

j=1,2

Ri j
(
r, r′ω

)
. (10)

This general procedure can be applied to any system consisting of two objects with non-
overlapping electron densities, but we shall specify the results for the planar geometry and
calculate the response function of two metallic (jellium) slabs.

3. Application to two metallic slabs

We assume one of the slabs in the region −L1 � z � 0 with electron density corresponding
to rs1, and the other one in the region d � z � d + L2 with electron density corresponding to
rs2. In other words, d is the distance between the points where the electron densities of the two
slabs practically vanish, while the distance between jellium edges is D = d + 2� (figure 4),
where � is the characteristic electron density decay length. The jellium thicknesses are then
a1 = L1 − 2� and a2 = L2 − 2�. The regions of special interest to us are the regions where
electron density is equal to zero, and we shall denote them by L (z < −L1, i.e. left from the
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Figure 4. Electron density for two metallic slabs. D is the separation between the jellium edges,
while electron charge densities of the slabs are separated by d = D − 2�.

left slab), R (z > L2, i.e. right from the right slab) and I (0 < z < d , i.e. the intermediate
region).

Due to the planar symmetry of the system, all quantities could be Fourier transformed in
the ρ direction as

f (Q, z, z′) =
∫

A
dρ eiQρ f (r, r′) (11)

f (r, r′) = 1

(2π)2

∫
dQ e−iQρ f (Q, z, z′) (12)

where A is the surface of the metal and Q is the component of the wavevector parallel to the
surface.

For clarity, from now on, we shall omit the variables (conserved quantities) ω and Q as
arguments of the functions R and �. Equations (1) transform into

Ri
(
z, z′) = R0

i

(
z, z′) +

∫ ∞

−∞

∫ ∞

−∞
dz1 dz2 R0

i (z, z1) V (z1, z2) Ri
(
z2, z′) (13)

where i = 1, 2. KS-LDA response functions can now be written in the form [17, 18]

R0
i

(
z, z′) =

nM∑

n=1

∞∑

m=1

Fn,m (Q, ω) φn (z) φm (z) φn
(
z′) φm

(
z′) ; i = 1, 2 (14)

where the function F(Q, ω) can be calculated analytically [18, 20], and the functions φ are
real. nM is the number of occupied states.

The bare Coulomb interaction (2) transforms into

v
(
z, z′) = vQe−Q|z−z′ |, vQ = 2πe2

Q
(15)

and equations (4)–(7) become

R11
(
z, z′) = R1

(
z, z′) +

∫ d+L2

d
dz1

∫ 0

−L1

dz2 �12 (z, z1) v21 (z1, z2) R11
(
z2, z′) (16)

R12
(
z, z′) = �12

(
z, z′) +

∫ d+L2

d
dz1

∫ 0

−L1

dz2 �12 (z, z1) v21 (z1, z2) R12
(
z2, z′) , (17)
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R21
(
z, z′) = �21

(
z, z′) +

∫ 0

−L1

dz1

∫ d+L2

d
dz2 �21 (z, z1) v12 (z1, z2) R21

(
z2, z′) (18)

R22
(
z, z′) = R2

(
z, z′) +

∫ 0

−L1

dz1

∫ d+L2

d
dz2 �21 (z, z1) v12 (z1, z2) R22

(
z2, z′) (19)

with

�12
(
z, z′) =

∫ 0

−L1

dz1

∫ d+L2

d
dz2 R1 (z, z1) v12 (z1, z2) R2

(
z2, z′) (20)

�21
(
z, z′) =

∫ d+L2

d
dz1

∫ 0

−L1

dz2 R2 (z, z1) v21 (z1, z2) R1
(
z2, z′) (21)

and the function v12 represents the inter-slab bare Coulomb interaction:

v12
(
z, z′) = v21

(
z′, z

) = vQe−Q(z′−z); −L1 < z < 0, d < z ′ < d + L2. (22)

Indices i j ; i, j = 1, 2 denote the regions in which the variables z, z ′ are defined, i or j = 1
meaning the first (left) slab and i or j = 2 meaning the second (right) slab.

To solve the integral equations (16)–(19) selfconsistently it is convenient (and much more
numerically efficient) to transform them into the matrix form. Since the symmetry in the
direction perpendicular to the surfaces is broken, if we perform Fourier transformation in the
z direction, the integral equation does not transform into an algebraic one, but rather into a
matrix equation. Functions used for this transformation should be constructed as products of
the functions ui (z) and vi (z ′) (depending on the region of definition of variables z and z ′),
where each set of functions (u and v) is defined within one of the slabs.

An obvious choice is the cosine functions (commonly used for a single slab [18, 19])
defined as

−L1 < z < 0 d < z′ < d + L2

uq1 (z) = 2

L1
ηq1 cos(q1z) vq2

(
z′) = 2

L2
ηq2 cos

[
q2

(
z′ − d

)]

ηq1 = 1 − 1
2δq1,0 ηq2 = 1 − 1

2δq2,0

q1 = nπ

L1
; q2 = nπ

L2

(23)

where n = 0, 1, 2, 3, . . . and δ is the Kronecker symbol.
For example, if z is defined in the region −L1 < z < 0 and z ′ in the region d < z ′ <

d + L2, the function f (z, z ′) can be expanded as

f
(
z, z′) = 4

L1 L2

∑

q1q2

ηq1ηq2 fq1q2 cos (q1z) cos
[
q2

(
z′ − d

)]
(24)

with

fq1q2 =
∫ 0

−L1

dz
∫ d+L2

d
dz′ cos (q1z) f

(
z, z′) cos

[
q2

(
z′ − d

)]
. (25)

Using (23) equations (16)–(21) become the following matrix equations:

R11 = R1 + �12v
T
12 R11 (26)

R12 = �12 + �12v
T
12 R12 (27)

R21 = �T
12 + �T

12v12 R21 (28)

R22 = R2 + �T
12v12 R22 (29)

�12 = R1v12 R2. (30)
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From equation (22) and definition (25) it is obvious that the v12q1q2 Fourier component of
the function v12(z, z′) is equal to the Fourier component v21q2q1 of the function v21(z, z′), so in
the equations above we were able to use the symmetry properties of the matrix v21,

v21 = vT
12 (31)

and also the symmetry properties of the matrices R1 and R2, which leads to

�T
12 = {R1v12 R2}T = RT

2 vT
12 RT

1 = R2v21 R1 = �21. (32)

Of course, in the symmetrical case (e.g. two slabs of equal thicknesses and electron densities)
�12 = �21 and v12 = v21.

After matrix inversions of (26)–(29) we get matrices R11, R12, R21 and R22, and then, after
using the Fourier transformation (24), we obtain the response function of the whole system
consisting of two interacting metallic slabs in z-space:

R (
z, z′) =

∑

i, j=1,2

Ri j
(
z, z′) . (33)

It is important to note that the only input we need in order to calculate R is the matrices
R0

1 and R0
2 , together with the matrices v1, v2 and v12 that can be calculated analytically and are

given by

vi,qi q ′
i
= 2πe2

q2
i + Q2

{
Li

ηqi

δqi q ′
i
+ Q

q ′2
i + Q2

[(
pqi + pq ′

i

)
e−QLi − (

1 + pqi pq ′
i

)]
}

; i = 1, 2

(34)

and

v12,q1q2 = 8πe2 Q

L1 L2
ηq1ηq2

(
1 − pq1e

−QL1
) (

1 − pq2e
−QL2

)

(
q2

1 + Q2
) (

q2
2 + Q2

) e−Qd (35)

where pqi is the parity of the qi th cosine harmonic, i.e. pqi = (−)qi Li /2π .
All the matrices are, of course, infinite, and have to be truncated. Fortunately, due to the

fast convergence, for slabs thinner than 100 a0 the dimension never needs to be greater than 50.
E.g. in our calculations we can use only 30 simple cosine harmonics.

4. Results and discussion

We can use the response function obtained in the previous section to calculate correlation
energy Vc(z) for a test point charge (e.g. electron) placed inside our system. Outside the slabs
this corresponds to the local (image) potential Vim(z). It is given as the energy difference
between the free charge and the charge interacting with the system, and can be calculated as
the real part of the localized electron self-energy for ω = 0:

Vc(z) = �E(z) = Re �(ω = 0, z) = −1

2

∫
dQ

(2π)2 Re Wind(Q, ω = 0, z, z) (36)

where Wind is the induced non-local screened interaction between the points z and z ′, and it can
be related to the response function as [18]

Wind(Q, ω, z, z′) =
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 v (Q, z, z1)R (Q, ω, z1, z2) v

(
Q, z2, z′) (37)

where v is again given by (15). This definition of the correlation energy is equivalent to the one
in [21] and represents the generalization of the classical image potential.
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Figure 5. Propagator of the induced non-local screened interaction Wind(Q, ω = 0, z, z ′) as a
function of the test charge position z ′ (represented by the dot), for Q = 0.4kF, ω = 10−5 EF,
D = 34 a0, rs1 = 2, rs2 = 4, a1 = 20 a0 and a2 = 30 a0. Dotted lines represent the jellium edges.

Since we used KS-LDA wavefunctions to calculate the response function, the potential
Vc(z) obtained in this way is somewhat similar to the LDA exchange–correlation potential
VXC. However, VXC takes properly into account the exchange and short range correlations,
which makes it more accurate than our Vc(z) for an electron inside the slab. On the other
hand, since the LDA VXC is exact for a homogeneous system and fails to include the long range
correlations, it is inaccurate for an electron outside the slab. In our correlation energy Vc(z) the
exchange and short-range correlations are included only through the KS-LDA wavefunctions
used to calculate the response function, and not through the potential formalism, making the
result inaccurate inside a slab. However, it includes the long-range correlations within RPA,
which makes it more accurate outside a slab, where KS-LDA fails. For very large distances
from the slab it is practically equal to the classical image potential.

We first show how the propagator of the induced non-local screened interaction
Wind (Q, ω = 0, z, z′) behaves for various positions of the test charge (figure 5). The test
charge is placed at point z ′ (represented by the dot) and Wind is then plotted as a function of
z. As already shown using the non-local self-energy instead of the interaction propagator [22],
the response is quite localized when the test charge is inside one of the slabs, but it becomes
strongly delocalized when the test charge is outside the slabs or between them.

Figure 6 shows our quantum mechanical correlation energy Vc(z) given by (36) compared
with the classical (image) potential Vim(z), calculated by solving the appropriate Poisson
equation, where the boundaries of the dielectric medium are taken to be at the jellium edges.
The classical potential, of course, does not depend on the electron density, while quantum
mechanical effects are stronger for higher densities (small rs). Also, if we observe the potential
barrier between the slabs, it is obvious that the barrier height in the centre of the gap is not much
lower than the classical one, but the difference becomes more significant as the electron moves
away from the centre. In other words, the barrier width is reduced, which would have strong
influence on the transmission probability for an electron moving from one slab to another with
energy slightly below the barrier top.
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densities, (b) different electron densities.
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Figure 7. Correlation energy Vc(z) (full line) and classical (image) potential Vim(z) (dashed line)
for the system consisting of two jellium slabs of equal thicknesses and electron densities, for four
various distances between the slabs.

We also examined the influence of the slab thicknesses on the effective potential, and
especially the barrier between the slabs. The classical potential does not depend on the slab



Quantum mechanical response of coupled metallic slabs 8227

10 15 20 25 30 35
D/a

0

V
c(d

/2
)/

eV

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 8. Barrier height as a function of the distance between slabs. The full line represents the
height of the quantum mechanical correlation energy Vc(d/2), while the dashed line is the height
of the classical (image) potential Vim(d/2).

thickness, but neither does the quantum mechanical one (i.e. the dependence is practically
negligible). On the other hand, they both depend on the distance between the slabs, and that
is shown in figure 7. Obviously, the quantum mechanical effects are much stronger for narrow
gaps, i.e. when the slab surfaces are closer and the coupling of the electron to the surface
excitations with larger wavevectors is stronger.

Finally, in figure 8, we show the quantum mechanical and classical barrier heights, i.e. the
distance between the vacuum level and the barrier top, as functions of the distance between the
slabs. As we can see, not only is the reduction of the barrier stronger for narrow gaps, but the
difference between the quantum mechanical and classical results becomes more obvious. On
the other hand, for gaps larger then 30 au, this difference becomes negligible.

5. Conclusion

We have presented a derivation of the polarizability of a system consisting of two separate
objects interacting through Coulomb forces, in the case when the distance between the objects
is large enough that their electron densities do not overlap. We applied this method to perform
an efficient full LDA-KS calculation of the response of systems consisting of two different
metallic (jellium) slabs, reducing the problem to the much easier single-slab calculations. The
results were illustrated by the detailed discussion of the correlation energy for the static test
charge. Our method can be extended to the calculation of response functions and dynamical
screening propagators of more complex planar systems, like superlattices or heterostructures,
and also to the study of van der Waals interaction between metallic slabs of arbitrary thicknesses
and densities.
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